ȸ α â


α ޴

!  å

  •  ɷ
  • ɷ
    <ָ ij> /<> |
 󼼺
̽  ϴ


̽ ϴ

<ȫ>,<>,<̽> | ȭ

Ⱓ
2023-08-11
ePub
뷮
84 M
PCƮºPC
Ȳ
3, 0, 0
å α׷ ġ ȵǽó?å α׷  ġ
 Ұ
 Ұ
ټ
ǻ ٸ

 Ұ

м ̽

͸ ķ Ͽ óѴ. ̽ ֵ ִ ̺귯 ̸ Ȱϴ å ׿ ʿ ֿ İ õ Լ ̺ ڵ ǽ ִ. ӽŷ ΰ Ȱ ִ پ ϴ Ŷ ̸ Ȱϸ ٷ ִ. Ȯ ڸ ϴ ȸ Ŭ Ҹ ߴ з 索 , ü ˻, ײ, ձ۾ ϰ غ ν Ȯ ش. Ư ׸ ظ ó ֱ ʰ ִ. Ư¡ Ͽ ľϴ CNN ݺ̰ ִ н Ưȭ RNN ϸ鼭 Ű н ش. ̸ нϿ Ӿ ϰ ִ о߿ ڽŸ ο ϴ Ȱϸ ̴.

ڼҰ

ϰ ȭ Ʈ ϰ ִ. İ ׿ ԹϿ, Ư ֽ . ȭ н Ʃ ä ϰ ִ.

PART 0 ȯ

1. ̽ ġ
01. Windows OS
02. Mac OS
2. ʿ Ű ġ
01. (Jupyter)
02. xlwings
03. Ŷ(Scikit-Learn)
04. OpenCV Numpy
05. Matplotlib
3. ̽- ǽ
01. ߺ ǽ
02. ķ ̹

PART 1 (Numpy)

1. 迭(ndarray)
01. arange Լ
02. reshape Լ
03. array indexing
2.
01. Ģ İ
02. eye Լ
03. ġ (Transpose)
04. flip Լ
05. pad Լ
3. ̺
01. Լ
02. ̺ α׷

PART 2

1. н
2. y = wx н
01. غ
02. ս Լ(Loss)
03. ϰ(Gradient Descent)
04.
3. y = wx + b н
01. ̺
02. Ȯ ϰ(Stochastic Gradient Descent)
03.
4. y = w1 1 + w2 2 + b н
01. ǥ
02.
03.
5. Լ н
01. (Deep Learning)
02. üη(CHAIN RULE), (Forward Propagation), (Back Propagation)
03. Ȱȭ Լ(Activation Function)
04.

PART 3 ȸ

1. 索
01. Ȯ
02. ȭ
03. Ķ(Hyper Parameter)
04. /
2. ü ˻
01. Ȯ
02.
03.

PART 4 з

1. з
01. ñ׸̵(Sigmoid)
02. з
03.
04. ñ׸̵带 ߰ Ȱȭ Լ ʴ 1
2. з
01. Ʈƽ(Softmax)
02. īװ ũν Ʈ(Categorical Cross Entropy)
03. 𵨱

PART 5 з

1. ײ з
01. Ȯ
02. ڵ(One-hot Encoding)
03.
2. ձ۾ з
01. Ȯ
02. ó
03.
04. Ѱ

PART 6 CNN

1. ̹ Ư
2. Ϳ ռ(Convolution)
3. ռ
4.
5. CNN ߰
01. ķ ǥ
02. Stride
03. е(Padding)
04. Ǯ(Pooling)
05. ä

PART 7 RNN

1. RNN
2. Ŀ

η 1 Google Spreadsheet
1. ̺ API ϱ
2. Ʈ API ϱ

η 2 Tensorflow
1. 索
2. ü ˻
3. ײ
4. ձ۾
5. ö

ټ

  • 10
  • 8
  • 6
  • 4
  • 2

(ѱ 40̳)
侲
Ʈ
 ۼ ۼ õ

ϵ ϴ.

ǻ ٸ