м ̽ ķ Ͽ óѴ. ̽ ֵ ִ ̺귯 ̸ Ȱϴ å ʿ ֿ İ õ Լ ̺ ڵ ǽ ִ. ӽŷ ΰ Ȱ ִ پ ϴ Ŷ ̸ Ȱϸ ٷ ִ. Ȯ ڸ ϴ ȸ Ŭ Ҹ ߴ з 索 , ü ˻, ײ, ձ۾ ϰ غ ν Ȯ ش. Ư ظ ó ֱ ʰ ִ. Ư¡ Ͽ ľϴ CNN ݺ̰ ִ н Ưȭ RNN ϸ鼭 Ű н ش. ̸ нϿ Ӿ ϰ ִ о߿ ڽŸ ο ϴ Ȱϸ ̴.
PART 0 ȯ 1. ̽ ġ 01. Windows OS 02. Mac OS 2. ʿ Ű ġ 01. (Jupyter) 02. xlwings 03. Ŷ(Scikit-Learn) 04. OpenCV Numpy 05. Matplotlib 3. ̽- ǽ 01. ߺ ǽ 02. ķ ̹ PART 1 (Numpy)1. 迭(ndarray) 01. arange Լ 02. reshape Լ 03. array indexing 2. 01. Ģ İ 02. eye Լ 03. ġ (Transpose) 04. flip Լ 05. pad Լ 3. ̺ 01. Լ 02. ̺ α PART 2 1. н 2. y = wx н 01. غ 02. ս Լ(Loss) 03. ϰ(Gradient Descent) 04. 3. y = wx + b н 01. ̺ 02. Ȯ ϰ(Stochastic Gradient Descent) 03. 4. y = w1 1 + w2 2 + b н 01. ǥ 02. 03. 5. Լ н 01. (Deep Learning) 02. üη(CHAIN RULE), (Forward Propagation), (Back Propagation)03. Ȱȭ Լ(Activation Function) 04. PART 3 ȸ 1. 索 01. Ȯ 02. ȭ 03. Ķ(Hyper Parameter) 04. / 2. ü ˻ 01. Ȯ 02. 03. PART 4 з 1. з 01. ñ̵(Sigmoid) 02. з 03. 04. ñ̵带 ߰ Ȱȭ Լ ʴ 12. з 01. Ʈƽ(Softmax) 02. īװ ũν Ʈ(Categorical Cross Entropy) 03. PART 5 з 1. ײ з 01. Ȯ 02. ڵ(One-hot Encoding) 03. 2. ձ۾ з 01. Ȯ 02. ó 03. 04. Ѱ PART 6 CNN1. ̹ Ư 2. Ϳ ռ(Convolution) 3. ռ 4. 5. CNN ߰ 01. ķ ǥ 02. Stride 03. е(Padding) 04. Ǯ(Pooling) 05. ä PART 7 RNN1. RNN 2. Ŀ η 1 Google Spreadsheet 1. ̺ API ϱ 2. Ʈ API ϱ η 2 Tensorflow 1. 索 2. ü ˻ 3. ײ 4. ձ۾ 5. ö